The brain is composed of a network of neurons that transmit signals by propagating nerve impulses. The propagation of this impulse from one neuron to another is typically controlled by neurotransmitters, though there are also electrical pathways between some neurons. Neurotransmitters can inhibit impulse firing (primarily done by γ-aminobutyric acid, or GABA) or they can excite the neuron into firing (primarily done by glutamate). A neuron that releases inhibitory neurotransmitters from its terminals is called an inhibitory neuron, while one that releases excitatory neurotransmitters is an excitatory neuron. When the normal balance between inhibition and excitation is significantly disrupted in all or part of the brain, a seizure can occur. The GABA system is an important target for anticonvulsant drugs, since seizures may be discouraged by increasing GABA synthesis, decreasing its breakdown, or enhancing its effect on neurons.[7]

Because some cancer cells are inefficient in processing ketone bodies for energy, the ketogenic diet has also been suggested as a treatment for cancer.[59][60] A 2018 review looked at the evidence from preclinical and clinical studies of ketogenic diets in cancer therapy. The clinical studies in humans are typically very small, with some providing weak evidence for anti-tumour effect, particularly for glioblastoma, but in other cancers and studies, no anti-tumour effect was seen. Taken together, results from preclinical studies, albeit sometimes contradictory, tend to support an anti-tumor effect rather than a pro-tumor effect of the KD for most solid cancers.[61]
Ketogenic.com is on a mission to bring you the highest quality education and information on ketosis and the ketogenic diet as it relates to nutrition, exercise and therapeutics. The site is filled with articles, recipes, tips and tools from the top thought-leaders and doctors. Sign up to get VIP access to eBooks and valuable weekly keto tips for FREE!
×